679 research outputs found

    Microscopic mechanism for cold denaturation

    Get PDF
    We elucidate the mechanism of cold denaturation through constant-pressure simulations for a model of hydrophobic molecules in an explicit solvent. We find that the temperature dependence of the hydrophobic effect is the driving force/induces/facilitates cold denaturation. The physical mechanism underlying this phenomenon is identified as the destabilization of hydrophobic contact in favor of solvent separated configurations, the same mechanism seen in pressure induced denaturation. A phenomenological explanation proposed for the mechanism is suggested as being responsible for cold denaturation in real proteins

    On the Frequency Dependency of Radio Channel's Delay Spread: Analyses and Findings From mmMAGIC Multi-frequency Channel Sounding

    Full text link
    This paper analyzes the frequency dependency of the radio propagation channel's root mean square (rms) delay spread (DS), based on the multi-frequency measurement campaigns in the mmMAGIC project. The campaigns cover indoor, outdoor, and outdoor-to-indoor (O2I) scenarios and a wide frequency range from 2 to 86 GHz. Several requirements have been identified that define the parameters which need to be aligned in order to make a reasonable comparison among the different channel sounders employed for this study. A new modelling approach enabling the evaluation of the statistical significance of the model parameters from different measurements and the establishment of a unified model is proposed. After careful analysis, the conclusion is that any frequency trend of the DS is small considering its confidence intervals. There is statistically significant difference from the 3GPP New Radio (NR) model TR 38.901, except for the O2I scenario.Comment: This paper has been accepted to the 2018 12th European Conference on Antennas and Propagation (EuCAP), London, UK, April 201

    Spectral representation of the effective dielectric constant of graded composites

    Full text link
    We generalize the Bergman-Milton spectral representation, originally derived for a two-component composite, to extract the spectral density function for the effective dielectric constant of a graded composite. This work has been motivated by a recent study of the optical absorption spectrum of a graded metallic film [Applied Physics Letters, 85, 94 (2004)] in which a broad surface-plasmon absorption band has been shown to be responsible for enhanced nonlinear optical response as well as an attractive figure of merit. It turns out that, unlike in the case of homogeneous constituent components, the characteristic function of a graded composite is a continuous function because of the continuous variation of the dielectric function within the constituent components. Analytic generalization to three dimensional graded composites is discussed, and numerical calculations of multilayered composites are given as a simple application.Comment: Physical Review E, submitted for publication

    Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force

    Get PDF
    We use the three-dimensional Mercedes-Benz model for water and Monte Carlo simulations to study the structure and thermodynamics of the hydrophobic interaction. Radial distribution functions are used to classify different cases of the interaction, namely, contact configurations, solvent separated configurations, and desolvation configurations. The temperature dependence of these cases is shown to be in qualitative agreement with atomistic models of water. In particular, while the energy for the formation of contact configurations is favored by entropy, its strengthening with increasing temperature is accounted for by enthalpy. This is consistent with our simulated heat capacity. An important feature of the model is that it can be used to account for well-converged thermodynamics quantities, e.g., the heat capacity of transfer. Microscopic mechanisms for the temperature dependence of the hydrophobic interaction are discussed at the molecular level based on the conceptual simplicity of the model.Peer reviewe

    Cutting Ice: Nanowire Regelation

    Get PDF
    Even below its normal melting temperature, ice melts when subjected to high pressure and refreezes once the pressure is lifted. A classic demonstration of this regelation phenomenon is the passing of a thin wire through a block of ice when sufficient force is exerted. Here we present a molecular-dynamics study of a nanowire cutting through ice to unravel the molecular level mechanisms responsible for regelation. In particular, we show that the transition from a stationary to a moving wire due to increased driving force changes from symmetric and continuous to asymmetric and discontinuous as a hydrophilic wire is replaced by a hydrophobic one. This is explained at the molecular level in terms of the wetting properties of the wire.Peer reviewe
    corecore